证明:如果$\phi(x)$是一个多项式,则$\phi'(x)$就是$\phi(x+h)$按照$h$的幂的展开式中$h$的系数.
证明:令$\phi(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$.则\begin{equation} \phi'(x)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+\cdots+a_1\end{equation}\begin{equation} \phi(x+h)=a_n(x+h)^n+a_{n-1}(x+h)^{n-1}+\cdots+a_1(x+h)+a_0\end{equation}下面我们来看$h$的系数.由二项式定理,$h$的系数是
\begin{equation} C_n^1x^{n-1}a_n+C_{n-1}^1x^{n-2}a_{n-1}+\cdots+a_1=na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+\cdots+a_1\end{equation}
注:此题与有联系.